Obsah:
- Krok 1: Potrebný hardvér:
- Krok 2: Pripojenie hardvéru:
- Krok 3: Kód na meranie teploty:
- Krok 4: Aplikácie:
Video: Meranie teploty pomocou ADT75 a Raspberry Pi: 4 kroky
2024 Autor: John Day | [email protected]. Naposledy zmenené: 2024-01-30 11:58
ADT75 je vysoko presný, digitálny snímač teploty. Obsahuje pásmový teplotný snímač a 12-bitový analógovo-digitálny prevodník na monitorovanie a digitalizáciu teploty. Vďaka vysoko citlivému senzoru je dostatočne kompetentný na presné meranie teploty okolia.
V tomto návode je demonštrované prepojenie senzorového modulu ADT75 s malinou pi a bolo tiež ukázané jeho programovanie v jazyku Java. Na čítanie hodnôt teploty sme použili malinový pi s adaptérom I2C. Tento adaptér I2C uľahčuje a spoľahlivejšie pripojenie k modulu senzora.
Krok 1: Potrebný hardvér:
Materiály, ktoré potrebujeme na dosiahnutie nášho cieľa, obsahujú nasledujúce hardvérové komponenty:
1. ADT75
2. Raspberry Pi
3. Kábel I2C
4. I2C štít pre malinovú pi
5. Ethernetový kábel
Krok 2: Pripojenie hardvéru:
Časť zapojenia hardvéru v zásade vysvetľuje zapojenie potrebné medzi senzorom a malinovým pi. Zabezpečenie správneho pripojenia je základnou potrebou pri práci na akomkoľvek systéme s požadovaným výstupom. Potrebné spojenia sú teda tieto:
ADT75 bude fungovať cez I2C. Tu je príklad schémy zapojenia, ktorá ukazuje, ako prepojiť každé rozhranie snímača.
Hneď po vybalení je doska nakonfigurovaná na rozhranie I2C, preto vám toto pripojenie odporúčame použiť, ak ste inak agnostik.
Všetko, čo potrebujete, sú štyri drôty! Vyžadujú sa iba štyri pripojenia Vcc, Gnd, SCL a SDA piny, ktoré sú prepojené pomocou kábla I2C.
Tieto spojenia sú znázornené na obrázkoch vyššie.
Krok 3: Kód na meranie teploty:
Výhodou použitia maliny pi je, že vám poskytuje flexibilitu programovacieho jazyka, v ktorom chcete dosku programovať, aby ste s ňou mohli prepojiť senzor. S využitím tejto výhody tejto dosky tu demonštrujeme jej programovanie v Jave. Java kód pre ADT75 si môžete stiahnuť z našej komunity github, ktorá je komunitou Control Everything.
Rovnako ako pre jednoduchosť používateľov, vysvetľujeme kód aj tu:
Ako prvý krok kódovania si musíte stiahnuť knižnicu pi4j v prípade jazyka Java, pretože táto knižnica podporuje funkcie použité v kóde. Ak si chcete stiahnuť knižnicu, môžete navštíviť nasledujúci odkaz:
pi4j.com/install.html
Pracovný kód java pre tento senzor môžete skopírovať aj tu:
import com.pi4j.io.i2c. I2CBus;
import com.pi4j.io.i2c. I2CDevice;
import com.pi4j.io.i2c. I2CFactory;
import java.io. IOException;
verejná trieda ADT75
{
public static void main (String args ) hodí výnimku
{
// Vytvorenie zbernice I2C
Zbernica I2CBus = I2CFactory.getInstance (I2CBus. BUS_1);
// Získať zariadenie I2C, adresa ADT75 I2C je 0x48 (72)
I2CDevice zariadenie = Bus.getDevice (0x48);
Thread.sleep (500);
// Prečítajte 2 bajty údajov
bajt dáta = nový bajt [2];
device.read (0x00, data, 0, 2);
// Previesť údaje na 12-bitové
int temp = ((data [0] & 0xFF) * 256 + (data [1] & 0xF0)) / 16;
ak (teplota> 2047)
{
teplota -= 4096;
}
dvojnásobok cTemp = teplota * 0,0625;
dvojnásobok fTemp = (cTemp * 1,8) +32;
// Výstup údajov na obrazovku
System.out.printf ("Teplota v stupňoch Celzia: %.2f C %n", cTemp);
System.out.printf ("Teplota vo Fahrenheite: %.2f F %n", fTemp);
}
}
Knižnica, ktorá uľahčuje komunikáciu i2c medzi senzorom a doskou, je pi4j a jej rôzne balíky I2CBus, I2CDevice a I2CFactory pomáhajú nadviazať spojenie.
import com.pi4j.io.i2c. I2CBus;
import com.pi4j.io.i2c. I2CDevice;
import com.pi4j.io.i2c. I2CFactory;
import java.io. IOException;
Funkcie write () a read () sa používajú na zápis niektorých konkrétnych príkazov do snímača, aby fungoval v konkrétnom režime, respektíve na čítanie výstupu snímača.
Výstup senzora je tiež zobrazený na obrázku vyššie.
Krok 4: Aplikácie:
ADT75 je vysoko presný, digitálny snímač teploty. Môže byť použitý v širokej škále systémov vrátane systémov na ochranu životného prostredia, počítačového tepelného monitorovania atď. Môže byť tiež začlenený do riadenia priemyselných procesov, ako aj monitorov energetických systémov.
Odporúča:
Meranie teploty pomocou AD7416ARZ a Raspberry Pi: 4 kroky
Meranie teploty pomocou AD7416ARZ a Raspberry Pi: AD7416ARZ je 10-bitový snímač teploty so štyrmi jednokanálovými analógovo-digitálnymi prevodníkmi a integrovaným snímačom teploty. K teplotnému senzoru na častiach je možné pristupovať prostredníctvom kanálov multiplexora. Táto vysoko presná teplota
Meranie teploty pomocou ADT75 a Arduino Nano: 4 kroky
Meranie teploty pomocou ADT75 a Arduino Nano: ADT75 je vysoko presný, digitálny snímač teploty. Obsahuje pásmový teplotný snímač a 12-bitový analógovo-digitálny prevodník na monitorovanie a digitalizáciu teploty. Vďaka vysoko citlivému senzoru je pre mňa dostatočne kompetentný
Meranie teploty pomocou snímača teploty LM35 s Arduino Uno: 4 kroky
Čítanie teploty pomocou snímača teploty LM35 s Arduino Uno: Ahoj chlapci, v tomto návode sa naučíme používať LM35 s Arduino. Lm35 je teplotný senzor, ktorý dokáže čítať hodnoty teploty od -55 ° C do 150 ° C. Jedná sa o 3-terminálne zariadenie, ktoré poskytuje analógové napätie úmerné teplote. Hig
Meranie teploty pomocou STS21 a Raspberry Pi: 4 kroky
Meranie teploty pomocou STS21 a Raspberry Pi: Digitálny teplotný senzor STS21 ponúka vynikajúci výkon a priestorovo úspornú stopu. Poskytuje kalibrované linearizované signály v digitálnom formáte I2C. Výroba tohto senzora je založená na technológii CMOSens, ktorá pripisuje vynikajúcemu
Meranie teploty pomocou ADT75 a fotónu častíc: 4 kroky
Meranie teploty pomocou ADT75 a fotónu častíc: ADT75 je vysoko presný, digitálny snímač teploty. Obsahuje pásmový teplotný snímač a 12-bitový analógovo-digitálny prevodník na monitorovanie a digitalizáciu teploty. Vďaka vysoko citlivému senzoru je pre mňa dostatočne kompetentný